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ABSTRACT 

Extending Nambu's suggestion that there are 

stringlike classical solutions in the Weinberg- 

Salam Model, we argue that these include closed 

tori of weak neutral (ZO) flux. 
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In an insightful discussion, Nambu (1) has suggested 

that the spectrum of the Weinberg-Salam model may be even 

richer than previously expected. He argues that there 

are very likely classical dumbell-like solutions of the 

equations of motion describing a monopole-antimonopole pair 

connected by a stringlike tube of neutral weak (Z") flux. 

These solutions presumably correspond in the quantum theory 

to a spectrum of narrow resonances, with masses in the 

range of a few TeV and with widths characteristic of electro- 

magnetic-weak decays at these energies. 

In this note, we extend Nambu's considerations and 

suggest that the stringlike tubes of flux form closed tori which 

also generate a spectrum of narrow resonances in the TeV 

range. Unlike Nambu's rotating dumbells (magnetic dipoles), 

which even classically radiate electromagnetically, the closed 

loops discussed here do not. They may well be completely 

stable classically (true solitons), although this cannot be 

determined without a more careful analysis of the classical 

field equations. Like the dumbells, the tori give rise to 

Regge trajectories, but the slope of the leading closed-loop 

trajectory is less than half the slope of the leading 

dumbell trajectory. (2) 

Nearly all the general features Of our solutions can 

be inferred from essentially dimensional analysis, which we 

now present. (Later we shall discuss some more technical 

details.) First let us recall some properties of the weak 
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flux tube. (1) It has a radius p, and mass per unit length 

7 o given by 

PO = 2( cos ewf’2 mH %J 

cos e 

7 
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where ew is the Weinberg angle: mW, the mass of the charged 

weak vector boson; s, the mass of the Higgs scalar meson. 

As usual, a = e2/4r * l/137. Suppose we have a closed loop 

of flux. To justify the string approximation, the length of 

the loop L must be large compared to the diameter of the 

flux tube, L 77 2p". If the loop were static, it would have 

a mass L 7 
0 

77 2 p"rO; in motion, it will be somewhat larger. 

Now we have as a characteristic mass scale for the flux loop 

the quantity: 

2 cos3'2 
POT0 = 

ew sin20w 

%mw 
a 

In estimating its magnitude, our greatest uncertainty is the 

Higgs mass. To be optimistic, we will choose 5 GeV, and leave 

the reader to correct for his/her own favorite value. Then 

for sin"0, = l/4 (mW = 75 GeV), we find 

PO 
- .02 f 

POT0 FJ 1 TeV. 

Since the string approximation requires that the size of 

the loop be large compared to the radius of the flux tube, we 



conclude that several TeV is a lower limit for a classical, 

stringlike toris. 

As with dumbells( the torus must be dynamically stabilized 

by some sort of periodic motion, a rotation or oscillation. 

The general solution for the motion of the classical, relativistic, 

closed string may be summarized (2) as follows: Let Z(7,c) 

be the coordinates of the curve described by the string. 

The parameter 7 will be taken proportional to the time, 

t = 2U' MT, where the "Regge slope" a' is related to the 

string tension according to a' = 1/2nro. (M is the invariant 

mass of the string, i.e., its total energy in the center-of- 

mass frame.) The parameter u e[O,27r] describes the curve at 

a fixed time. Because the string is closed, Z(T.0) = Z(7,27r). 

In the center-of-mass frame, the general solution may be 

written as 

;:= + Zne 
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where the constants of the motion A, 
+ 
Bn are subject to the 

following constraints: 
+* 
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Then 

(A) = L(B), 
Lk k 0 for k # 0 (Virasovo conditions) 

and 

L(A) = L(~) = _ (a’ M)2 
0 0 

What are some simple examples of such solutions? The 

canonical solution in discussions of dual models (2) is a 

loop tightly drawn along a line, tumbling about its center. 

(Fig. la), a motion on the leading trajectory. In the context 

of a stringlike approximation to a classical solution of the field 

theory, this is evidently unacceptable since it corresponds 

to overlapping flux tubes. Another possible simple motion 

is described by a circle whose radius oscillates between some 

maximum value and zero. (Fig. lb). This is appealing because 

it has angular momentum zero, but here again the string approxi- 

mation breaks down. When the radius of the circle is on the 

order of the diameter 2p. of the flux tube, itis not sensible 

to speak of a well-defined string. (Note, however, there 

could well be classical solutions of the field theory roughly 

of this type. See below.) It is unfortunately not easy to 

find simple motions for which the string approximation is 

valid at all times. One can show that every motion consisting 

of a single frequency N(i.e., xn = gn = 0 for all n # N) 

has the property that the string overlaps itself at some time. 

It is possible that inclusion of other eigenfrequencies could 

circumvent this conclusion. Nevertheless, we believe that 

there are very likely classically stable, monopole-free motions 
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of pure Z“-flux which resemble closed tori at least much of the time. 

We turn to discuss some interesting questions raised 

by our investigation. First, it is important to determine 

whether lower mass, classical solutions exist even though the 

string approximation to the flux tube or the point mass 

approximation to the monopole is invalid. If such states 

lie on approximately linear Regge trajectories which extend 

down to low spin states, then it can easily be estimated that 

the low angular momentum states will have masses an order of 

magnitude smaller than those found here, i.e., in the "low mass" 

region of perhaps hundreds of GeV. These are not so very much 

heavier than the elementary vector bosons themselves. Secondly, 

the stability of any of the classical solutions remains to be shown. 

It is interesting to ask how any of the soliton states 

we have been discussing would decay. Nambu's dumbells are not 

even stable classically (1) and lose energy due to electro- 

magnetic radiation. Our tori might be stable classically. 

Quantum mechanically, they would presumably decay via creation 

of various particles, such as through the emission of Higgs 

bosons, elementary vector bosons (especially Z"), and lepton- 

antilepton or quark-antiquark pairs. (Dumbells would also 

participate in some of these mechanisms.) Given the classical 

soliton solutions of the field equations, how could one 

in principle, calculate such effects? The propagator for a 

soliton may be represented by the usual path integral expression 

by requiring that the quantum fields tend asymptotically to 

the classical configurations. (3) The width of the state may 

be inferred from the imaginary part of the inverse propagator. 



Such a procedure might even be implementable in a weak-coupling 

theory such as this. A specific decay amplitude could be 

determined from an overlap path integral between an incoming 

soliton and a given outgoing state, such as a fermion-antifermion 

pair. 

As Nambu illustrated (1) , these kinds of solitons are 

sensitive to both the gauge group and the particular representation 

of Higgs fields. Consequently, it should be very interesting 

to investigate other popular unified gauge theories for 

similar states. Unfortunately, it may be difficult to find 

such solutions in general. Because they are not completely 

topological stable, it is not possible to infer their existence 

from the usual homotopy arguments. (4) We do not know of a 

systematic procedure for discovering these solutions, but we 

will make a couple of remarks. First, it is worth noting 

that these solutions are not without topological significance. 

The stability of the flux tube, for example, stems from the 

existence of a topological conservation law in two space - 

dimensions, viz, flux quantization or vorticity. Consequently, 

one general approach to discovering solutions of the type 

found by Nambu and by us would be to use homotopic methods in 

two dimensions to determine the properties of tubelike solutions 

and then dynamically stablize three dimensional solutions as 

outlined here. So long as the characteristic size of the three 

dimensional object is large compared to the diameter of the 

tube, this should be a good approximation. Another similar 

approach suggested by Nambu's construction is to relax the 
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finite energy requirement and explore the asymptotic differential 

equations, possibly by topological methods. This is essentially 

the method he used to find the semi-infinite flux tube 

terminating on a monopole. 

A third method might be to draw analogies with similar 

lattice gauge theories. When the electromagnetic field Au 

and the charged vector boson fields 'x& are all set equal to 

zero, the resulting Lagrangian involving only the Z" vector 

field is identical to the Abelian Higgs model. Indeed, the 

"topological" excitations of this U(1) theory on a lattice 

are precisely of the dumbell and closed loop types (5) although, 

it must be noted, the origin of the monopoles is quite different. 

In addition, the stability of these structures is provided by 

the rigidity of the lattice, in contrast to the continuum 

theory where rotations or oscillations may be required for 

stability in the absence of a short distance cutoff. 

It is worth noting that certain types of non-topological 

solitons have been found by variational methods. (6) However, 

these generally exploit a conserved "charge" related to some 

underlying symmetry by Noether's theorem. Consequently, 

these methods would not appear to be transferable to the 

types of solutions under discussion here. (7) 

As noted earlier, Nambu's solutions are not even stable 

at the classical level, which renders the problem of finding 

a general approach even more challenging. How should one 

search for an unstable solution to the classical field equations 
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whose ratio of width to mass happens to be small? 

In summary it seems likely that the spectrum of particles 

in the Weinberg-Salam model and certain other unified theories 

includes new heavy particle states in the range of hundreds of 

GeV up to many TeV. An examination of their general properties 

(including their production and decay mechanisms) and an 

investigation of the theoretical questions raised above are 

important for understanding the role of these intriguing 

statz. 
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FIGURE CAPTIONS 

Fig. 1 Two simple, single frequency classical motions 

Fig. la) Leading Regge Trajectory 

Fig. lb) A motion having zero angular momentum 
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